• Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
  • News & Events
    • News
    • Events
    • Publications
Menu
  • Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
  • News & Events
    • News
    • Events
    • Publications
Giovanni Giuliano
Giovanni Giuliano
This user account status is Approved
2014/2015
University of Glasgow
BAE Systems
Underwater optical communication systems
The underwater world represents 70% of our planet. As the number of human underwater activities grows, with the advent of underwater sensor networks, remotely operated vehicles and autonomous underwater vehicles, the need for an efficient and flexible means of communicating through seawater has become of utmost importance. Common terrestrial technologies, such as fibre-optic communication, are difficult to employ underwater due to the constraint of a physical link, which reduces the maximum operational depth and limits the manoeuvrability [1]. Underwater acoustic-wave-based communication, widely used in the past, are limited due to their low-speed and low energy efficiency [2]. However, the recent development of high bandwidth GaN-based sources has further renewed interest in the development of underwater optical communication systems (UOCS), particularly within the low loss transmission window of water in the blue-green region [3]. 2. Objectives Modelling the channel is a fundamental step in an UOCS due to the different medium compared to other free-space optical communications. The ocean water has widely varying optical properties. The optimal wavelength is highly dependent on water type and the two main processes affecting light propagation, absorption and scattering, are both wavelength-dependent and influenced by the rich chemical and biological environment. Hence, the underwater channel design is based on an understanding of the optical properties of ocean water. Moreover, sunlight has a maximum intensity in the blue-green region. The solar background can be reduced by using a transmission wavelength that matches one of the Fraunhofer lines, which are narrow intervals of relative intensity minima that act as natural filters [4,5]. 3. Methodology An important step in the design of an UOCS is the trade-off analysis, taking into account the channel model and setting the system parameters, such as: power efficiency, bandwidth efficiency, transmission reliability and cost. At least three different system configurations are possible [6], depending on the transmitter source (LED or LD). LEDs have a medium modulation speed, a wide field of view and an incoherent output light, making them more suitable for low cost, moderate data rates and short range links such as small platforms. In contrast LDs, thanks to their coherent, highly directional and well-collimated beam profile as well as high modulation speed, allow longer transmission links, provide an active pointing mechanism to persistently maintain optical alignment toward the receiving station with an acceptable accuracy. Indeed, the pointing-and-tracking between the transmitter and the photodetector is crucial to maximise the amount of optical power density received. A highly sensitive array of photodetectors is required, in particular for non-stationary vehicles in clear seawater, where the intensity decreases rapidly with lateral distance from the beam. The results of numerical simulations indicate that links under 15 m are achievable with all configurations [7]. So, the choice of the source, as well as of the link geometry, is based on the water scattering conditions and the system performance requirements. 4. Conclusions The total attenuation in clear ocean water is limited by the absorption whereas in harbour water the scattering from large particles is the main limiting factor. Thus, it is more challenging to design a UOCS near the shore than open ocean. The development of an UOCS will have a great impact in the defence and civil sectors with commercial products and solutions that take advantage of the unexplored opportunities offered by oceanic optics. 5. References 1. N. Farr, et al. "An integrated, underwater optical/acoustic communications system." OCEANS 2010 IEEE-Sydney, 1-6 (2010) 2. I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad hoc networks 3, 257–279 (2005) 3. S. Watson, et al. “Visible light communications using a directly modulated 422 nm GaN laser diode,” Optics Letters 38, 3792–3794 (2013) 4. G. Giuliano, et al. "Laser based underwater communication systems", Transparent Optical Networks (ICTON), 2016 18th International Conference on. IEEE (2016) 5. G Giuliano, L. Laycock, D. Rowe, and A. E. Kelly, "Solar rejection in laser based underwater communication systems", Optics Express 25 (26), 33066-33077 (2018) 6. S. Arnon, “Underwater optical wireless communication network,” Optical Engineering 49, 1–6 (2010) 7. P. V. Kumar, S. Praneeth, and R.B. Narender, “Analysis of optical wireless communication for underwater wireless communication,” Int. J. Sci. Eng. Res 2 (2011)

Back to student profiles

Home » Student Profile

UoE

EPSRC Centre for Doctoral Training in Applied Photonics

CDT Office: 44 (0)131 451 8229

Twitter

Heriot-Watt University, Edinburgh, Scotland. Scottish Registered charity number: SC000278 | Disclaimer

  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
Menu
  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.