Skip to content
  • Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
    • Key Dates
  • News & Events
    • News
    • Events
    • Publications
Menu
  • Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
    • Key Dates
  • News & Events
    • News
    • Events
    • Publications
Project

Novel laser designs to exploit low-cost-per-Watt pumping of Tisapphire for application in sensing, imaging, and precise timing technologies

University of Strathclyde

Project Type: EngD

Supervisor: Professor Alan Kemp

Website: www.fraunhofer.co.uk

Project Description

This studentship will build on the synergies between the parallel programmes at Fh-CAP and the IoP. The studentship research programme will draw together expertise on the Fh-CAP side on practical, high performance diode-pumped Ti:sapphire systems in the ultrashort pulse [1] and single frequency domains [2], with the work ongoing at the IoP on understanding the underpinning spectroscopic properties of Ti:Sapphire under diode laser pumping [3]. The studentship will seek to exploit novel approaches to the design and engineer of a high-performance and low-SWaP Ti:sapphire laser systems that are opened up by the move to a direct diode-laser pumping. In particular, options here would involve semi-monolithic microchip-type cavity designs including waveguide geometries, novel mode-locking regimes including graphene mode-locking and broadband frequency comb generation from highly nonlinear fibers, master-oscillator-power-amplifier approaches and wavelength multiplexing of pump lasers for a high-power operation. Further, the studentship will look at various system stabilisation techniques and rugged architectures for overall system reliability and applications outside the laboratory environment. Such high-performance and low-cost laser apparatus will significantly advance a range of applications from quantum imaging, quantum-secure communications, precision time keeping and transfer, low-noise microwave generation and remote spectroscopy areas. This studentship will benefit from and contribute to a wider Fraunhofer CAP projects portfolio supported by Innovate UK, which involves multiple industry partners. 

The applications focus of the studentships, and so the detail of the technical approaches investigated will depend on industrially driven demand when the studentship commences. While at this stage, the applications pull is towards the ultrafast, the approaches set out above would also be very relevant to single-frequency devices.

1. J. C. E. Coyle, A. J. Kemp, J.-M. Hopkins, and A. A. Lagatsky, “Ultrafast diode-pumped Ti:sapphire laser with broad tunability,” Opt. Express 26, 6826-6832 (2018), doi: 10.1364/OE.26.006826.

2. A. A. Lagatsky, G. M. Bonner, P. J. Schlosser, D. J. M. Stothard, and L. J. McKnight, “Ultra-compact diode-pumped single-frequency Ti:sapphire laser,” Opt. Lett. 47, 2995-2998 (2022), doi: 10.1364/ol.460367.

3. J. C. E. Coyle, J.-M. Hopkins, A. A. Lagatsky, and A. J. Kemp, “Titanium Sapphire: A Decade of Diode-laser Pumping,” in 2019 Conference on Lasers and Electro-Optics

CDT Essential Criteria

A Masters level degree (MEng, MPhys, MSc) at 2.1 or equivalent.

Desire to work collegiately, be involved in outreach, undertake taught and professional skills study.

Project Essential Criteria

Desire to undertake a complex experimental project which involves elements of numerical modelling, laser systems development, engineering and characterisation. Desire to interact with external end-users for the developed technology prototyping and testing.

Project Desirable Criteria

Background in optics and laser physics. Numerical modelling or programming skills.

The CDT

The CDT in Applied Photonics provides a supportive, collaborative environment which values inclusivity and is committed to creating and sustaining a positive and supportive environment for all our applicants, students, and staff. For further information, please see our ED&I statement https://bit.ly/3gXrcwg. Forming a supportive cohort is an important part of the programme and our students take part in various professional skills workshops, including Responsible Research and Innovation workshops and attend Outreach Training.

Other Projects

Synthetic optical materials for photonic metasurfaces applications 🌐

May 5, 2022

Neural networks conditioning using expert knowledge

May 7, 2021

A study of Rydberg atom for sensing and communication applications

August 7, 2019

Visible wavelength optical metasurfaces for use in human-machine interfaces

May 5, 2022
View All Projects

Home » Novel laser designs to exploit low-cost-per-Watt pumping of Tisapphire for application in sensing, imaging, and precise timing technologies

UoE

EPSRC Centre for Doctoral Training in Applied Photonics

CDT Office: 44 (0)131 451 8229

Twitter

Heriot-Watt University, Edinburgh, Scotland. Scottish Registered charity number: SC000278 | Disclaimer

  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
Menu
  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT