• Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
  • News & Events
    • News
    • Events
    • Publications
Menu
  • Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
  • News & Events
    • News
    • Events
    • Publications
Jack Marston
Jack Marston
This user account status is Approved
2018/2019
University of Strathclyde
EDF Energy
Photonic sensing within civil nuclear infrastructure for lifetime extension and long-term structural health monitoring of de-commissioned plant
The existing fleet of nuclear power plants (NPPs) in the UK have been granted life extensions into the 2020s and 2030s. Lifetime extension is associated with an increased need for monitoring to ensure safe operation. To achieve this, while keeping the cost of investment in new instrumentation infrastructure down, innovative and robust sensor solutions and ways to analyse measurement data automatically are required. Following de-commissioning and partial de-construction of NPPs, it is critical that many monitoring systems remain operational for decades to alert the custodian of the plant of any structural deterioration that may cause further damage or risk to personnel. Photonics and fibre optics hold the promise of high-resolution measurement, multiplexing, robustness, security and longevity. Consequently, this EngD project will address the plethora of engineering issues to develop remote monitoring systems for key civil structures with an NPP. Among other things, the project will develop and demonstrate a combined system for monitoring crack deterioration and CO2 leakage in multiple locations of a pressure vessel housing an Advanced Gas Reactor. The project will assess a number of competing photonic techniques that can be employed for these tasks, including distributed and semi-distributed strain sensors, and various techniques for gas sensing, compatible with a multiplexed system. Interferometric techniques may need to be deployed to measure very small changes in strain or displacement. Methods of sensor integration with plant ensuring long-term stability will be developed while ensuring cost effectiveness. Machine learning and other techniques, e.g., tipping point analysis will be investigated to assist in the detection of structural deterioration. Following laboratory investigations, a demonstration system will be deployed within an operating NPP. The project is expected to push the boundaries of the current state of the art in fibre-optic measurement in the areas of photonic systems integration and automatic data analysis from a distributed photonic sensor network.

Back to student profiles

Home ยป Student Profile

UoE

EPSRC Centre for Doctoral Training in Applied Photonics

CDT Office: 44 (0)131 451 8229

Twitter

Heriot-Watt University, Edinburgh, Scotland. Scottish Registered charity number: SC000278 | Disclaimer

  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
Menu
  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.