• Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
  • News & Events
    • News
    • Events
    • Publications
Menu
  • Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
  • News & Events
    • News
    • Events
    • Publications
Bence Szutor
Bence Szutor
This user account status is Approved
2018/2019
University of Strathclyde
UniKLasers Ltd
Single-Frequency Laser Engineering at Exotic Wavelengths for Quantum Technologies
Quantum Technologies hold great promise to bring a step-change improvement to a diverse range of high-impact applications, such as ultra-stable clocks for financial transaction time stamping and satellite-free navigation, medical imaging, oil and gas prospecting, and ultra-secure communications. Whilst the scientific principles upon which these technologies rely are now largely proven, the subsystems (in particular, laser systems) upon which they depend are excessively large, expensive and power-hungry. If QT is ever to deliver on its potential, orders of magnitude reduction in size, cost and power consumption will have to be realised, and such systems will have to operate at wavelengths that are not currently easily accessible. This 4-year EngD programme will develop new laser systems, critically required by QT systems, which will match the optical performance of the Titanium:Sapphire laser in a footprint and price point comparable to the external-cavity diode laser (ECDL). We will demonstrate operation on many otherwise difficult-to-access but crucial laser lines. Such a development will be a critical step on the road to the translation of QT from the research community to the defence, space and consumer market. The research and engineering will cover a variety of areas including laser system design, build and testing, making use of novel gain and nonlinear media.

Back to student profiles

Home ยป Student Profile

UoE

EPSRC Centre for Doctoral Training in Applied Photonics

CDT Office: 44 (0)131 451 8229

Twitter

Heriot-Watt University, Edinburgh, Scotland. Scottish Registered charity number: SC000278 | Disclaimer

  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
Menu
  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.