• Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
  • News & Events
    • News
    • Events
    • Publications
Menu
  • Prospective Students
    • The Programme
    • How to Apply
    • Project Vacancies
  • Our Partners
    • Academic Profiles
    • Partner Companies
    • Technical Scope
    • Capital Equipment
    • Propose a Project
  • Current Students
    • Our Students
    • Guidelines and Resources
  • News & Events
    • News
    • Events
    • Publications
Project

Ultra-High-Q Integrated Optical Microresonators for Frequency Comb Generation

University of Glasgow

Project Type: EngD

Supervisor: Professor Marc Sorel

Website: http://www.npl.co.uk

Project Description

Integrated photonics is a major emerging technological field with the potential for massive impact on the biomedical, security, defence, transportation, telecoms and other sectors. Specifically, integrated high-Q optical microresonators could form the basis for a vast array of new devices including handheld optical clocks, trace gas detectors, ultraprecise lidar, narrow-linewidth lasers, low-noise microwave sources, biosensors, gyroscopes and optical data transmitters. This project addresses two of the main challenges in bringing such devices to fruition: achieving ultra-high-Q waveguide ring resonators and integrating these with semiconductor lasers on the same chip.

The project will focus on developing silicon nitride waveguide ring resonators with Q factors approaching 108 and above, building upon the latest and most advanced techniques for deposition, nanolithography and etching, and modelling the waveguide geometry to optimise dispersion. The resonators will then be used for frequency comb generation, with emphasis on self-referenced octave-spanning combs for optical clocks and dual-comb spectroscopy. Time permitting, the student will also research techniques to integrate III-V semiconductor lasers with the silicon platform of the silicon nitride resonators in order to realise self-contained monolithic devices.

The new knowledge generated by this project will bring us closer to commercialising a range of exciting on-chip ultra-high-Q microresonator-based technologies.

 

Essential Criteria

– A bachelor’s degree in physics, engineering or a similar subject with class 2:1 (or equivalent) or above

– An inquisitive and analytical mind, self-motivation and the ability to work independently

– Inclination towards experimental work

 

Desirable Criteria

– A master’s degree with courses on photonics and/or nanofabrication

– Previous experience of experimental research

 

Working Environment

For the first half of their project, the student will be based primarily at the James Watt Nanofabrication Centre (https://www.gla.ac.uk/research/az/jwnc) at the University of Glasgow. This is a world-leading cleanroom facility where the student will have access to a comprehensive range of cutting-edge equipment for growing, etching, imaging and characterising integrated photonics devices on both III-V and silicon platforms, all supported by full-time technical staff. Here, they will develop and hone the process of fabricating silicon nitride waveguide ring resonators on silicon wafers, from growing and depositing silica and silicon nitride all the way through to patterning, etching and polishing, with the aim of achieving record Q factors. They will also be able to build upon considerable in-house experience in working towards integrating a III-V semiconductor laser source with their resonators.

During the remainder of their project and short trips before that, the student will work at the National Physical Laboratory within the Time and Frequency Department, where they will characterise their resonators and use them to generate frequency combs. They will have the use of two laboratories and a cleanroom that are fully equipped for these purposes as well as femtosecond laser writing and silica microresonator and tapered fibre fabrication. They will also benefit from close collaboration with NPL experts in optical frequency metrology and gas spectroscopy.

The student will be co-supervised by Prof. Marc Sorel at the University of Glasgow, a leading expert in integrated optics, silicon photonics and semiconductor lasers, and by Dr Jonathan Silver, who leads NPL’s Microphotonics activities and is currently an RAEng UK Intelligence Community Postdoctoral Research Fellow. The University of Glasgow boasts a vibrant student life, and NPL has over 100 doctoral students and a Postgraduate Institute that organises regular events including an annual student conference.

 

Flexible Research Working

NPL believes in a culture of fairness by treating everyone on the basis of their own individual merits and abilities regardless of their own or perceived identity, background or any other factor irrelevant to a person’s work. At NPL we are committed to the health and well-being of our employees and students. Flexible working and social activities are embedded in our culture to create a positive work-life balance, along with a broad range of benefits. NPL’s values are at the heart of what we do and they shape the way we interact, develop our people and celebrate success.

 

 

 

Other Projects

Beyond CMOS optical sensing: NIR and SWIR Time-Resolved Readout Techniques

January 19, 2021

Active 2-dimensional optical meta-surfaces

November 25, 2019

Development of Planar Waveguide Based Gas Sensors for Challenging Environments

August 5, 2019

Laser sources and semiconductor optical amplifiers for free-space orbital angular momentum communication systems

February 12, 2020
View All Projects

Home » Ultra-High-Q Integrated Optical Microresonators for Frequency Comb Generation

UoE

EPSRC Centre for Doctoral Training in Applied Photonics

CDT Office: 44 (0)131 451 8229

Twitter

Heriot-Watt University, Edinburgh, Scotland. Scottish Registered charity number: SC000278 | Disclaimer

  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
Menu
  • Equality, Diversity and Inclusion Statement
  • Contacts
  • About Us
  • Login
  • Support Staff
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.